A numerical study on the flow of blood and the transport of LDL in the human aorta: the physiological significance of the helical flow in the aortic arch.
نویسندگان
چکیده
It has been proposed that a mass transfer phenomenon called concentration polarization of low-density lipoproteins (LDLs) may occur in the arterial system and is likely involved in the localization of atherogenesis. To test the hypothesis that concentration polarization of LDL may be suppressed by the helical flow pattern in the human aorta, hence sparing the ascending aorta from atherosclerosis, the effects of aortic torsion, branching, curvature, and taper on blood flow and LDL transport in the lumen were simulated numerically under steady-state flow conditions using four aorta models constructed based on in vivo MRI slices. The results showed that it was the aortic torsion that induced the helical flow in the aortic arch, stabilizing the flow of blood in the aorta, and compensated the adverse effects of the aortic curvature on blood flow and LDL transport. The helical flow reduced the luminal surface LDL concentration in the aortic arch and probably played a role in suppressing severe polarization of LDL at the entrances of the three branches on the arch, hence, protecting them from atherogenesis. The taper of the aorta was another important feature of the aorta that further stabilized the flow of blood and delayed the attenuation of the helical flow, making it move beyond the arch and into the beginning part of the descending aorta. The results therefore may account for why the ascending aorta and the arch are relatively free of atherosclerosis.
منابع مشابه
Blood Flow Simulation in an Aorta with a mild coarctation Using Magnetic Resonance Angiography and Finite Volume Method
Coarctation of the aorta is one of the five main congenital cardiovascular failures, accounting for 6–8 percent of these failures. This research aimed to simulate the blood flow of a seventeen-year-old male teen with a mild coarctation at one-third of his aorta's descending branch. The simulation was performed by extracting the domain and the input pulsatile velocity signal as the boundary cond...
متن کاملNumerical Investigation of Angulation Effects in Stenosed Renal Arteries
Background: Numerical study of angulation effects of renal arteries on blood flow has been of great interest for many researchers.Objective: This paper aims at numerically determining the angulation effects of stenosed renal arteries on blood flow velocity and renal mass flow.Method: An anatomically realistic model of abdominal aorta and renal arteries is reconstructed from CT-scan images and u...
متن کاملStudy of Pulsatile Non-Newtonian Blood Flow Through Abdominal Aorta and Renal Arteries Incorporating Fluid- Structure Interaction
Background: The interaction between the blood and the vessel wall is of great clinical interest in studying cardiovascular diseases, the major causes of death in developed countries.Objective: To understand the effects of incorporating fluid-structure interaction into the simulation of blood flow through an anatomically realistic model of abdominal aorta and renal arteries reconstructed from CT...
متن کاملNumerical Modeling of Two-Layered Micropolar Fluid Through an Normal and Stenosed Artery
In the present work a two fluid model for blood flow through abnormally constrictedhuman artery (stenosed artery) has been developed. The model consists of a core region of suspensionof all erythrocytes assumed to be micro-polar fluid so as to include the micro-structural effects inaddition to the peripheral-layer viscosity effects, and a peripheral plasma layer free from cells of anykind of Ne...
متن کاملA numerical investigation of heat transfer and pressure drop in a novel cylindrical heat sink with helical minichannels
This study numerically investigated heat transfer and fluid flow characteristics in a novel cylindrical heat sink with helical minichannels for the laminar flow of fluid with temperature-dependent properties. A finite volume method was employed to obtain the solution of governing equations. The effects of helical angle, channel aspect ratio, and Reynolds number, which were regarded as main para...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 297 1 شماره
صفحات -
تاریخ انتشار 2009